
www.manaraa.com

Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

4-6-2021 

Numerical modeling of the fiber deposition flow in extrusion-Numerical modeling of the fiber deposition flow in extrusion-

based 3D bioprinting based 3D bioprinting 

Dhanvanth Jaya Talluri 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Talluri, Dhanvanth Jaya, "Numerical modeling of the fiber deposition flow in extrusion-based 3D 
bioprinting" (2021). Theses and Dissertations. 2877. 
https://rdw.rowan.edu/etd/2877 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=rdw.rowan.edu%2Fetd%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2877?utm_source=rdw.rowan.edu%2Fetd%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


www.manaraa.com

NUMERICAL MODELING OF FIBER DEPOSITION FLOW IN 

EXTRUSION-BASED 3D BIOPRINTING 

 

 

 

 

by 

Dhanvanth Jaya Surya Saran Talluri 

 

 

 

 

A Thesis 

Submitted to the 

Department of Mechanical Engineering 

College of Engineering 

In partial fulfillment of the requirement 

For the degree of 

Master of Science in Mechanical Engineering 

at 

Rowan University 

 

 

 

 

Thesis Chair: Amir K. Miri, Ph.D. 

 

Committee Members: 

Anu Ranjan Osta, Ph.D. 

Trkov Mitja, Ph.D.  



www.manaraa.com

© 2021 Dhanvanth Jaya Surya Saran Talluri 

  



www.manaraa.com

iii 

Dedications 

I would like to dedicate this work to my advisor Amir K. Miri, Ph.D., my parents, 

my friends and all the people who have supported me in my academic career. 

  



www.manaraa.com

iv 

 

Acknowledgments 

 

Apart from my efforts, this research project's success was due to many others' 

encouragement and guidance. I want to express my sincere gratitude to my principal 

advisor, Dr. Amir K. Miri, Assistant Professor of Mechanical Engineering, for his patience, 

motivation, support, and enthusiasm. I also thank my thesis committee members, Dr. Anu 

Osta and Dr. Mitja Trkov , Department of Mechanical Engineering. My notable thanks to 

Dr. Reza Avaz, Department of Mechanical and Biomedical Engineering, Texas A&M 

University, for providing his research work for my project and his technical support. My 

sincere thanks go to the Rowan University Department of Mechanical Engineering for 

providing me an opportunity to pursue my Master’s degree with full financial support. I 

am especially indebted to my parents for their immense love and support. Finally, I would 

like to express my sincere thanks to my friends and colleagues, who have guided and 

encouraged me during my graduate studies at Rowan University. 

  



www.manaraa.com

v 

Abstract 

 

 

Dhanvanth Jaya Surya Saran Talluri 

NUMERICAL MODELING OF THE FIBER DEPOSITION FLOW IN EXTRUSION-

BASED 3D BIOPRINTING 

2019-2020 

Amir K. Miri, Ph.D. 

Master of Science in Mechanical Engineering 

 

Extrusion bioprinting involves the deposition of bioinks in a layer-wise fashion to 

build 3D structures that mimic natural living systems' behavior in tissue engineering. 

Hydrogels are the most common bioinks, in which their viscosity properties are dependent 

on the shear-rate, such as Non-Newtonian fluids. Numerical simulation of extrusion 

bioprinting may help study the flow properties of hydrogels and designing improved 

bioinks. In this thesis, the instability caused by the shear-thinning or -thickening parameter 

during extrusion is numerically compared with the theoretical estimations. The process of 

fiber deposition of hydrogels onto a substrate through the single and coaxial nozzle is done 

using a commercial package (ANSYS Fluent). For various power-law bioinks, the 

morphology of single and multi-layer 3D bioprinted fibers, including the velocity, printing 

pressure, wall shear stress, and mixing proportion of two bioinks during bioprinting, are 

predicted for the first time. 
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Chapter 1 

 Introduction 

1.1 Extrusion-Based 3D Bioprinting 

Extrusion-based three-dimensional (3D) bioprinting, sometimes called direct 

writing [1], is a fabrication method by which hydrogels containing biomaterials/cells are 

deposited through a long and narrow extruder nozzle. The fibers are successively deposited 

on top of a substrate in a layer-wise fashion to build a 3D construct model containing living 

components. The displacement of the extrusion nozzle relative to the substrate can be 

controlled by the liquid hydrogel being deposited along with a predefined pattern. This 

approach is beneficial when bioprinting large cell concentrations to accelerate growth and 

tissue growth. But the possible detrimental effects on cell viability and functionality of 

polymerization and shear forces must be considered before the parameters of the 

bioprinting process are optimized. Shear-thinning behavior where resistance is decreased 

upon shear flow is required for an ideal bioink [2]. It should also be able to recover its 

mechanical properties relatively quickly upon exiting the nozzle. For biological 

applications, this technology seems ideal as it can deposit heterogeneous materials with a 

broad selection of properties. After printing, the scaffolds are normally soft, and they must 

be treated with some forms of gelation post-printing [3] to sustain their structural integrity. 

Tissue scaffolds are porous structures with interconnected architectures that promote cell 

metabolism by imitating the cellular environment, while offering sufficient mechanical 

support to preserve structure stability.  

Based on the ejection process, extrusion bioprinting approaches can be divided into 

three groups (Figure 1): pneumatic-, piston-, and screw-based bioprinting [4]. Pneumatic 
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bioprinting is a method of driving biomaterials/cells out of a syringe using compressed air 

at a controllable volume scale. The accuracy of the bioink deposition highly relies on its 

flow properties, which can be greatly influenced by the solution's dynamic viscosity [5]. In 

contrast, biomaterial/cell solutions are mechanically driven by a rotating screw-driven or 

linear piston moving alignment in piston- or screw-based bio-printing mechanisms [6]. 

Both printing systems may have strong deposition forces to monitor the volumes of the 

solution. 

 

Figure 1  

Common methods of deposition in extrusion-based bioprinting [7]. 

 

 

Mechanically driven systems involve relatively complex components and high 

driving forces [8]. A wide variety of viscous fluids are consistent with extrusion-based 

bioprinting. To provide structural support for tissue scaffolds, high viscous bioinks are 
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more desirable, whereas low viscous bioinks are more suited for cellular bioactivity [9], 

[10]. Therefore, to ensure both the mechanical integrity of tissue scaffolds and cell 

functionality, the synthesis of materials with predicted flow behavior must be thoroughly 

investigated. Mechanical stability of constructs can be improved by dispensing dense 

bioink fibers or reducing porosity by managing the nozzle diameter or monitoring the 

bioprinting process. Yet, thicker fibers and lower porosities limit cell diffusion and restrict 

the exchange of nutrients and metabolic waste [11]. Decreasing the diameter of fibers, on 

the other hand, can remove diffusion barriers. As specific cell types need unique conditions, 

it is crucial to modify scaffolds' mechanical properties by controlling the bioink types, 

bioink viscosities, or the bioprinting process to fulfill structural stability and cellular 

functionality needs [12]. Another approach to monitoring use of multiple bioinks and 

bioink viscosities is co-axial extrusion bioprinting. 

As a multi-material bioprinting method, coaxial bioprinting involves two separate 

layers of different biomaterials, cells, and cross-linking agents, in which the two layers are 

called “shell and core” (Figure 2A)[13]. Different combinations of biomaterials can 

simultaneously be extruded through the coaxial filament (Figure 2B) for better tissue 

regeneration ability. Coaxial bioprinting can have a synergistic effect on printability, 

structural complication, shape fidelity, and biocompatibility of two materials with different 

mechanical and biochemical properties. Generally, the high stiffness of bioinks may harm 

the biological activities of the encapsulated cells in them. 
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Figure 2  

A) Multi-layer bioprinted fiber, and B) Coaxial nozzle head [14]. 

 

 

Bioinks with relatively weak mechanical properties can provide micro-

environments suitable for cell viability and proliferation, but they do not produce well-built 

3D structures. By enabling users to choose several biomaterials for specific uses, coaxial 

printing is a way to address the current limitations of bioprinting [15]. For example, a stiffer 

material may be used in the center for mechanical support, while a comparatively material 

of lower stiffness can be placed in the shell for biological activity. Coaxial bioprinting has 

tremendous potential for creating stable mechanical properties and biological activities in 

a clearly built structure. It is also broadly used to build hollow or tube-like structures [16]. 

Coaxial-printed tubular constructs can mimic natural vascular networks because of the 

ability to provide nutrients, oxygen, and other biochemical elements through the core part. 

In terms of biological events such as cell-scaffold association, adaptation, proliferation, 

and even angiogenesis from soft to hard tissues, the control of coaxial made scaffolds over 

single-nozzle printed scaffolds has recently been shown [15]. As a simple and effective 

method for acquiring desirable bioink properties, multi-material hydrogels are earning 
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popularity. Multi-material bioinks have favorable printability and high structural fidelity 

due to their high viscosity and shear-thinning characteristics. 

 

1.2 Bioinks 

Bioinks are the materials for 3D bioprinting, and they may contain living cells 

(suspended or in aggregates) and extracellular matrix materials, such as suitable hydrogels, 

cell media, and other additives. Two major types of bioinks used for developing 

tissue/organ structures are: cell-scaffold based approach and scaffold-free cell-based 

approach [17]. In the first method, the bioink contains biomaterials/cells printed to develop 

3D tissue constructs. The scaffold biodegradation occurs at this time, and the encapsulated 

living cells grow and occupy space to form pre-designed tissue constructs. In the other 

method, living cells are printed directly in a method that resembles natural cell 

proliferation. A preferred group of live cells forms neoplasm tissues, which are later 

accumulated in a particular arrangement to form a combination of large functional tissue 

structures over time [18]. For a cell-scaffold-based approach, the optimal bioink 

preparation should meet those biomaterial and biological requirements.  

Biomaterial properties involve printability, mechanical characteristics, 

biodegradation, and maturation after bioprinting. Biological criteria primarily involve 

biocompatibility (not only non-toxic to other tissues/cells, but also the endurance of live 

cells inside bioink), cytocompatibility, and post-print bioactivity of cells. It is necessary to 

know the processing capabilities of the bioink formulation when the printability property 

of the bioinks is considered. After printing, it should also have the potential to self-hold 
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the 3D printed structure. The printability of the bioink depends on several factors, such as 

the viscosity of the bioink solution, the surface tension of the bioink, its own cross-link 

ability, and the surface properties of the printer nozzle. The printing efficacy and the 

encapsulation of live cells have strongly relied on the bioink solution hydrophilicity and 

viscosity. If the bioink formulation is very viscous, the pressure needed for extrusion may 

be higher, and it will influence the flow of the polymer solution from the tiny nozzle orifice. 

Compared to lower viscous solution formulations, this high viscous solution can create 3D 

structures with greater stability[17]. The use of the same bioink in various commercially 

available bioprinters allows the properties of the bioink formulation to be tunable.  

We beleive that the bioink instability immediately after leaving the nozzle is a 

crucial biophysical element in the extrusion-based bioprinting, showing how smoothly the 

bioink rests on the receiving substrate. Regarding extrusion-based bioprinting, bioink 

instability is characterized by any deviations from a constant curved cylinder over the 

surface of the paste-like filament. Instability also applies to a disturbance on a macro scale. 

Dynamic viscosity [19], yield stress, and the nozzle geometry are the major influencing 

properties for the onset instability of bioinks. The resistance of bioink to injection forces is 

indicated by viscosity, and it usually depends on the shear rate, i.e., non-Newtonian flow. 

It has also been stated that any decrease in yield stress facilitates the smoothness of bioink 

flow and surface distribution. The moderate yield stress was found to smooth the deposition 

process and maintain the shape, but high yield stress may lead to rapid moving of the fluid 

within the nozzle. By varying the printing velocity, bioink power-law coefficient, nozzle 

diameter, and nozzle height, we can precisely monitor instability at the deposition site. 
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Shear-thinning or shear thickening behavior is one of the hydrogel’s main features 

or any viscoelastic system [20]. All pseudoplastic hydrogels are shear thinning. In 

medicine, the ability of shear-thinning is highly developed for tissue engineering and drug 

delivery. A few peptides based, recombinant protein-based, colloidal, and blended 

hydrogels have been documented. They self-heal and thin out with an increasing shear rate 

and viscosity recovers when the shear-thinning is removed. Shear-thinning hydrogels have 

a high content of water and can be supplied in a minimally invasive way. If made of natural 

polymers, these hydrogels have the benefits of exceptional biocompatibility, lower 

toxicity, and decomposition costs. During self-supporting rapid solidification printing, 

bioink printability research focused primarily on the results of many primary factors, 

including bioink rheological features, bioink formulations, and operating conditions. The 

shear-thinning activity allows a pre-formed hydrogel to be delivered in vivo by applying 

shear stress during injection with desired physical properties, as characterized ex vivo. As 

the hydrogel is pre-formed ex vivo, the effect of the local environment on cross-linking is 

almost insignificant, whereas most injectable hydrogels are liquid before injection and can 

be affected by the in vivo environment during cross-linking. In shear-thinning hydrogels 

[21], the recovery of elastic modulus after shear can be much quicker than the gelation 

method of other forms of hydrogels. Finally, solely liquid precursor solutions can leak or 

dissolve with the body fluid into the surrounding tissue, which may restrict the 

development of hydrogel and pose questions about toxicity.  

High precision during printing, in situ gelation, visco-elastic properties, low cost, 

easily available, industrial scalability, biomimicking of internal tissue structures, 

mechanical stability, limited post-printing time for maturation, and immunological 
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viability when inserted in vivo and a wide variety of different cell types are other important 

desirable features for a bioink. Oxygen gas permeability, metabolic waste and the transport 

of nutrients are also essential. When choosing an excellent bioink material for 3D 

bioprinting, these fundamental criteria are very important. As described in the previous 

section, essential properties and features such as printability and mechanical properties, 

flexibility modifications, controlled biodegradability, and non-toxicity to cells (enable 

them to get their growth nutrients and further enhance their metabolic function during 

tissue regeneration) should be shown in the bioink specifications that are used in 3D 

bioprinting processes. Bioinks may be chosen according to the specifications of the desired 

tissues and organs and can be changed to regenerate the tissue or organ's appropriate 

structure. 

 

1.3 Numerical Modeling 

Fluids are a phase of matter that contain liquids and gases. They do not alter 

significantly under high stresses. Whereas solids resist applied shear or tangential stress by 

deformation, fluids flow under shear stress. While gases are fluids that fill their realms, 

liquids are fluids that shape a free surface in the presence of a gravitational force. 

Computational fluid dynamics (CFD) has made enormous strides [22], motivated primarily 

by the need of computer resources to address the CFD problem. Related mathematical 

equations can be interpreted and most of the equations used are extracted from concepts 

that are scientifically or experimentally valid and observed. The steps in applying a 

numerical solution are shown in Figure 3.  
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Figure 3 

Typical numerical analysis process [23]. 

 

 

CFDs are commonly based on the Navier-Stokes equation, the diffusion (or heat) 

equation, and the Stokes-Einstein equation (representing the diffusivity of molecules 

depending on their size and affinity), but the Darcy and Brinkman equations that describe 

porous flow and more are required for extrusion bioprinting of hydrogels. It is challenging 

to model extrusion-based 3D printing because it requires multi-physical (thermal and 

dynamical) phenomena on various spatial and temporal scales: the extrusion of material is 

a local activity, whereas the manufacturing of an entire component is a global process. 

After the material deposition, previous modeling studies focused primarily on the printed 

component's thermal and thermal-mechanical behavior. The printed strand's local thermal 

background is measured by lumped capacitance analysis [24] using analytical and 

computational thermal models. Thermal models are also coupled with structure-based 
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diffusion-driven models (driven by capillary forces) to predict the forming of a local bond 

between adjacent strands [25]. The entire component has been used as a global thermal-

mechanical simulation to measure temperature-induced deformations before and after 

fabrication, and residual stresses within the final component, for its crystallinity and 

probable crack initiation sites. The material extrusion is usually emulated in these models 

by a thermal/thermo-mechanical finite-element or a threshold-volume solver activation 

technique. In the case of the global simulation and a generalized cylinder with oval, 

elliptical, or octagonal cross-sections in the local models, the geometry of the deposited 

strand is typically simplified by rectangular voxels. Thus, the shape of the strands is an 

important energy balance parameter: the strands exchange the heat through their 

interactions, while their free surfaces exchange heat through convection and radiation [26]. 

 The detailed thermal models would be better analyzed through CFD simulations 

of deposition flow when the structure of extruded strand was determined. In a model 

developed by Ahn et al. [27], the principal parameters are the cross-section of the strands 

and their overlap time (necessary for healing). These parameters are used for parameter 

regression, which they require CFD simulations. The CFD simulations of the strand 

deposition can be used to predict the interstitial vacuum density between the strands 

directly in the mechanical behavioral models of the produced component. The CFD 

simulations presented in [28], [29] are for the non-isothermal power-law fluids inside the 

extruder's nozzle. The flow field within the extruded material, pressure drop inside 

extruders, and the melting distance from the liquefier injection shall be determined from 

these CFD simulations.  
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Heller [30] used CFD calculations to measure the composite polymer's flow-

inducing strand orientation inside a needle of Newtonian isothermal fluid using an 

axisymmetric extrusion needle. The effect of extruder geometry on the flow-induced pit 

orientation was studied; however, the deposition flow after the needle exit was not included 

in their CFD model. During deposition of the substance, McIlroy and Olmsted [31] have 

engineered an amorphous polymer's disintegration, expecting a smooth, detailed approach 

to the deposition flow, which avoids secondary flows. The deposition flow has been 

documented in condensed, two-dimensional simulations in [32]. The multiple strands 

positioned above each other by a high-precision 3D surface tracking algorithm and the 

Newtonian fluid model was simulated by Dabiri et al. [33]. However, this model did not 

solve the real extrusion flow, as in this mass conservation equation, the volumetric source 

term emulated material extrusion. In a recent work, which calls the non-isothermal fluxes 

of (non-Newtonian) shear-thinning fluids, the 3D extrusion and deposition flow of semi-

molten material has only been simulated to the authors' cognizance. Although the grid 

resolution was very coarse, the simulations from Du et al. [34] were capable of reliably 

predicting the region of interaction between the neighboring strands for various speed ratio 

values and the thickness of the coating. They have simulated molten metal deposition 

movement on a fusion-based AM basis using their computational models [35]. 

 A significant parameter for the configuration of the liquefier and the feeding 

mechanism of the printing head is the overall drop in the pressures inside the extruder. 

Deficient operational conditions can result in a feedstock filament buckling or filament 

feedstock slippage on the feeding roller [36], [37], resulting in volumetric flow 

irregularities. In the idealized geometry of the extruder containing cylindrical and conical 
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sections, Bellini et al. [38] suggested the mathematical model relating to the extrusion flux 

of liquefier hot flow and feeding roller mechanism (assuming no buckling or slipping of 

the feedstock filament) by analytical expression of non-isothermal fluid power-law flows. 

Abnormal fluid conditions (e.g., nozzle obstruction, overflow, fluid disruption, etc.) were 

suggested to be observed in dynamical extruder simulation from the vibrations of the 

accelerometers recorded in the printing head [39], [40]. However, these dynamic models 

ignore the printing force applied to the substrate by the extruded material, ignoring the fact 

that it also adds to the dynamics of the printing head [39]. 

Little research has been performed on modeling hydrogel fibers (3D bioprinting) 

and rheology of hydrogels used as feedstock [41], while a major amount of research was 

carried out on 3D printing [42], [43]. In this thesis, we present a 3D numerical model for 

the deposition of non-Newtonian fluid fibers projecting various hydrogels onto a substrate 

during and post 3D bioprinting process using a commercial CFD package (ANSYS Fluent). 

The variations in fiber profile with respect to the changes in the shear-thinning parameter 

were previously developed using theoretical model by Avaz et al., The nozzle diameters 

and nozzle heights for specific power-law fluids were chosen [45]. They are used to 

simulate multi hydrogel deposition through both single and double-nozzle nozzles by 

flowing different hydrogels individually or simultaneously to replicate the tubular and 

core-shell structures. The strand and velocity profiles of all power-law indices were 

compared to validate the model. This model will allow us to change the onset of instability 

by changing the bioink power-law index. By adjusting the bioink power-law coefficient 

and the nozzle diameter, we can precisely handle the instability at the deposition site. We 

illustrated how the shear-thinning or thickening of the bioink can control the stiffness of 
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deposition and help choose the right parameters like nozzle diameter, power-law index for 

bioink to perform the 3D model of the bioprinting process. In the last part of this thesis, we 

introduced a new application of our tool in 3D bioprinted organoid models.  
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Chapter 2 

Theory 

 

2.1 Introduction 

Focusing on the macroscopic scale in the study of fluid flow phenomena [46], [47]. 

It is often believed that the fluid is a continuum so that its physical and flow characteristics 

are described as equivalent at any point in space. Fluid flow activity may be classified as 

either Newtonian or non-Newtonian. Newtonian fluids are characterized by a linear 

association between shear stress and shear rate, with molecular viscosity one, which is a 

measure of a fluid capacity to resist deformation subjected to stress, representing the slope 

of the linear function. For non-Newtonian fluids, this relation is nonlinear. Likewise, fluid 

flow can be divided into different types, such as one-dimensional or multi-dimensional, 

single-phase, or multi-phase, real or ideal, compressible or incompressible, turbulent or 

laminar, steady or unsteady, and rotational or irrotational. These classifications are 

intended to simplify the theoretical and modeling method of fluid flow phenomena. 

Mathematically, flows are often graded according to the partial differential 

equations defining them. For example, in two individual variables, second-order partial 

differential equations are categorized as elliptic, hyperbolic, or parabolic [48]. Data moves 

along two characteristic lines in these equations, which can be real and distinct, real and 

coincident, or complex, relying on whether they are hyperbolic, parabolic, or elliptic. These 

different equation forms are solvable using computational methods. The fluid flows are 

governed by the Navier-Stokes equations, which are strongly nonlinear second-order 

partial differential equations in four independent variables. In general, the flows are 
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unsteady and 3D. Similar terminology is used in their classification as they share various 

properties describing second-order equations in two individual variables. Recirculating 

flows are elliptic, Transient, and supersonic flows are hyperbolic, and boundary layer flows 

are parabolic. As flows may be subsonic in a specific portion of the domain and supersonic 

in other sections or viscous dominated near to walls and inviscid in the core area, it is tough 

to describe a flow as coming under one of the above three types and if it is of the mixed 

type. This classification is done into the following: parabolic flows that are influenced by 

upstream locations only, hyperbolic flows assisting discontinuities, and elliptic flows by 

both upstream and downstream locations in the solution. 

 

2.2 Finite Volume Method 

 The Finite Volume Method (FVM) is a computational method that transforms the 

partial differential equations describing conservation laws into independent algebraic 

equations over finite volumes over differential volumes (or elements or cells). In a similar 

way to the finite difference or finite element system, the first step in the solution process is 

the discretization of the geometric domain, which is discretized into non-overlapping 

elements or finite volumes in the FVM. The partial differential equations are then 

discretized/transformed into algebraic equations by integrating them over each discrete 

variable. To compute the dependent variable values for each of the components, the system 

of algebraic equations is then solved. In CFD, the success of the FVM [49], [50] derives 

from the high versatility it gives as a method of discretization.  
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Although the finite difference [51], [52], and finite element methods [53] have 

preceded it for many years, the Finite Volume Method played a leading role in the fluid 

flow simulation problems and correlated transport phenomena as a result of the effort 

carried out in the early 70s by the CFD group at Imperial College under the leadership of 

Professor Spalding [54], with contributors such as Patankar [55], Gosman [56]. The FVM 

owes much of its flexibility and success, that discretization takes place directly in the real 

space without translation amongst the physical coordinate system and the computational 

coordinate system being required. Moreover, the use of a collocated arrangement [57] 

made it ideal for the resolution of flows in complicated geometries. These advancements 

have expanded the applicability of the FVM to cover a wide range of applications while 

retaining the simplicity of its mathematical formulation. Another important characteristic 

of the FVM is that its numerics mirror the physics and conservation principles it models, 

such as the integral property of the governing equations and the properties of the terms it 

discretizes. From what follows, the semi-discretized form of an overall scalar equation is 

obtained. Then, along with some guiding principles, the properties needed by the method 

of discretization are discussed. The chapter ends with a study of a number of FVM-related 

subjects. The semi-discretized equation's transformation into algebraic equations would be 

the topic of a number of chapters to come. 

2.2.1 Eulerian and Lagrangian Description of Conservation Laws 

  The conservation theory notes that such physical measured quantities be conserved 

over a local environment for an isolated system. This theory of conservation, or 

conservation law, is an axiom that cannot be mathematically proved but can be conveyed 

by a mathematical relationship. Various physical quantities such as mass, momentum, and 
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energy are regulated by laws of this kind (i.e., the Navier-Stokes equations). Following 

either a Lagrangian (material volume, MV) or an Eulerian (control volume, CV) approach 

[58], the conservation laws concerning fluid flow and associated transfer phenomena can 

be mathematically formulated. In the Lagrangian flow field description (Figure 4A), the 

fluid is subdivided into parcels of fluid, and each parcel of fluid is tracked as it passes 

through space and time. These parcels are labeled using a time-independent position vector 

field 𝑥0, generally chosen to be the parcels’ center of mass at some initial time 𝑡0, and the 

flow is termed by a function 𝑥(𝑡, 𝑥0). The path line portrayed by a fluid parcel (Figure 4A) 

is obtained as the collection of spots occupied at different times. 

On the other hand, as time progresses, the Eulerian solution (Figure 4B) focuses on 

particular positions in the flow region. Thus, the flow variables are functions of position x 

and time t, and the flow velocity is given by 𝑣(𝑡, 𝑥 ). As the derivative of the position of a 

fluid parcel 𝑥0 with respect to time represents its velocity, the two specifications are related 

by 

 𝑣(𝑡, 𝑥(𝑥0, 𝑡)) =
𝜕

𝜕𝑡
𝑥(𝑡, 𝑥0) (Eq.2.1) 

                                                  

Changes in the properties of a flowing fluid may be determined either at a fixed 

point in space as fluid particles cross it (Eulerian) or by following a fluid parcel along its 

direction, depending on the above definition (Lagrangian).  
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Figure 4 

A) Lagrangian and B) Eulerian specification of the flow field [59]. 

 

 

 

2.2.2 Reynolds Transport Theorem 

  For moving material volumes of fluids (Figure 4), and not for fixed points or control 

volumes, the conservation laws described above apply. There is a need to know the 

Eulerian equivalent to an integral taking over a moving material volume of fluid in order 

to express these laws according to a Eulerian approach. This is given by the transport 

theorem of Reynolds [60]. Depending on whether the control volume is constant, moving, 

or deformable, the conversion formula varies slightly. To derive the formula, let B be any 

property of the fluid (mass, momentum, energy, etc.) and let 𝑏 = ⅆ𝐵/ⅆ𝑚 be the 

concentrated value of B (amount of B per unit mass) in any tiny element of the fluid. 

For the random moving and deforming control volume shown in (Figure 4), the 

instantaneous total change of B in the material volume (MV) is equal to the instantaneous 

total change of B in the control volume (CV) plus the net movement of B into and out of 
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the control volume through its control surface (S). Let 𝜌 indicates the density of the fluid, 

𝑛 the outward normal to the control volume surface, 𝑣 (𝑡, 𝑥)the velocity of the fluid, 

𝑣𝑠(𝑡, 𝑥) the velocity of the deforming control volume surface, and 𝑣𝑟(𝑡, 𝑥) the relative 

velocity by which the fluid enters/leaves the control volume [i.e., 𝑣𝑟=𝑣 (𝑡, 𝑥)-𝑣𝑠(𝑡, 𝑥)], then 

the Reynolds transport theorem gives 

 

(
𝜕𝐵

𝜕𝑡
)

𝑀𝑉
=

ⅆ

ⅆ𝑡
( ∫ 𝑏𝜌 ⅆ𝑉

𝑉(𝑡)

) + ∫ 𝑏𝜌𝑣𝑟 . 𝑛 ⅆ𝑆

𝑆(𝑡)

 (Eq.2.2) 

 

For a stable control volume, 𝑣𝑠 = 0, and the geometry is time-independent, 

indicating that the time derivative term on the right-hand side of Eq. (2.2) can be written 

using the Leibniz rule as 

 
ⅆ

ⅆ𝑡
(∫ 𝑏𝜌 ⅆ𝑉

𝑉

) = ∫
𝜕

𝜕𝑡
(𝑏𝜌) ⅆ𝑉

𝑉

 

          

(Eq.2.3) 

 

Therefore Eq. (2.2) simplifies to 

 (
𝜕𝐵

𝜕𝑡
)

𝑀𝑉
= ∫

𝜕

𝜕𝑡
(𝑏𝜌) ⅆ𝑉

𝑉

+ ∫ 𝑏𝜌𝑣  . 𝑛 ⅆ𝑆

𝑆

 (Eq.2.4) 

 

Applying the divergence theorem to convert the surface integral into a volume integral, Eq. 

(2.4) becomes, 
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 (
𝜕𝐵

𝜕𝑡
)

𝑀𝑉
= ∫ [

𝜕

𝜕𝑡
(𝜌𝑏) + 𝛻 ⋅ (𝜌𝑣𝑏)] ⅆ𝑉

𝑉

 (Eq.2.5) 

    

An alternative form of Eq. (2.5) can be obtained by developing the second term in the 

square bracket and using the substantial derivative to get 

 (
𝜕𝐵

𝜕𝑡
)

𝑀𝑉
= ∫ [

𝐷

𝐷𝑡
(𝜌𝑏) + 𝜌𝑏𝛻 ⋅ 𝑣] ⅆ𝑉

𝑉

 (Eq.2.6) 

 

Equation (2.5) or (2.6) can be used to derive the Eulerian form of the conservation laws in 

fixed regions. 

Reynolds Number: The Reynolds number (𝑅𝑒) [61], [62] is defined as              

 𝑅𝑒 =
𝜌𝑈𝐿

𝜇
 (Eq.2.7) 

 

And maybe understood as a measure of the relative importance of advection (inertia) to 

diffusion (viscous) momentum fluxes. If the momentum fluxes are in the same direction, 

the Reynolds number shows the characteristics of the flow's boundary layer. If the fluxes 

are described so that the diffusion is in the direction of the cross-stream, then, as seen in 

(Figure 5), Re conveys the regime of flow (i.e., laminar, transitional, or turbulent). 
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Figure 5 

Flow over a flat plate diagram showing the laminar, transitional, and turbulent flow 

regimes dependent on the value of Re [59]. 

 

 

 

2.2.3 Conservation of Mass  

The principle of conservation of mass [51], [52], [55]–[57] shows that in lack of 

mass sources and sinks, a region will conserve its mass on a regional level. Consider the 

material volume of fluid shown in (Figure 6) of mass m, density 𝜌, and velocity v, mass 

conservation in material (Lagrangian) coordinate system can be written as 

 (
ⅆ𝑚

ⅆ𝑡
)

𝑀𝑉
= 0 (Eq.2.8) 

    

For B = m, the corresponding intensive quantity is b = 1, and based on Eq. (2.6), the 

corresponding expression of mass conservation in an Eulerian coordinate system is 

 ∫ [
𝐷𝜌

𝐷𝑡
+ 𝜌𝛻 ⋅ 𝑣] ⅆ𝑉

𝑉

= 0 (Eq.2.9) 
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Figure 6 

Conservation of mass for a material volume of a fluid of mass m [59]. 

 

 

For the integral given in Eq. (2.9) to be accurate for any control volume V, the integrand 

must be equal to zero, providing the differential form of the mass conservation or continuity 

equation as 

 
𝐷𝜌

𝐷𝑡
+ 𝜌𝛻 ⋅ 𝑣 = 0 (Eq.2.10) 

 

The flux form of the continuity equation can be derived using Eq. (2.5) and leading to 

 ∫ [
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑣)] ⅆ𝑉

𝑉

= 0 (Eq.2.11) 
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Again, for the integral in Eq. (2.11) to be accurate for any control volume V, the integrand 

must be equal to zero, providing the differential form of the mass conservation or continuity 

equation as 

 

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑣) = 0 

 

(Eq.2.12) 

 

In the absence of any significant absolute pressure or temperature changes, it is acceptable 

to assume that the flow is incompressible; that is, the pressure changes do not significantly 

affect density. This is invariably the case in liquids and is a good approximation in gases 

at speeds considerably less than that of sound. Noting that sound waves are compressible 

phenomena. The most critical consequence in fluid dynamics is that the mass conservation 

equation can no longer be used to compute the density. The incompressibility condition 

indicates that q does not change with the flow, which mathematically can be expressed as 

𝐷𝜌/𝐷𝑡 = 0. Applying the mass conservation equation given by Eq. (2.10), this is 

equivalent to stating that the continuity equation for incompressible flow is given by  

 𝛻 . 𝑣 = 0 (Eq.2.13) 

 

or in integral form as 

 

∫(𝑣  . 𝑛) ⅆ𝑆 = 0

𝑆

 

 

(Eq.2.14) 
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Equation (2.14) says that for incompressible flows, the net flow throughout any control 

volume is zero, i.e., “flow out” = “flow in.”  

Also, note that 𝐷𝜌/𝐷𝑡 = 0 does not imply that 𝜌 is the same everywhere (although this 

happens to be the case in many hydraulic applications), but that 𝜌 does not change along a 

streamline. To be exact, the incompressibility approximation suggests that every single 

fluid element keeps its original density as it moves. In practice, density differences are 

commonly encountered in water due to variation in salt concentration and in the air due to 

temperature differences resulting in important buoyancy forces. 

2.2.4 Conservation of Momentum  

 The principle of conservation of linear momentum [58], [60], [63]–[65] suggests that in 

the absence of any external force acting on a body, the body maintains its overall 

momentum, i.e., the product of its mass and velocity vector. Momentum being a vector 

quantity, its components are often conserved in any direction.  In respect of a substance's 

material volume, Newton's Second Law of Motion states that only in the presence of a net 

force on that substance, like surface forces and corps forces, the momentum of this defined 

volume will change. Hence, by considering the material volume of fluid shown in (Figure 

7) of mass 𝑚, density 𝜌, and velocity 𝑣, Newton’s Second Law in Lagrangian coordinates 

can be written as 

 (
ⅆ(𝑚𝑣)

ⅆ𝑡
)

𝑀𝑉

= (∫ 𝑓 ⅆ𝑣

𝑉

)

𝑀𝑉

 (Eq.2.15) 
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Figure 7 

Conservation of linear momentum for a material volume of a fluid of mass m [59]. 

 

  

 

where 𝑓 is the external force per unit volume acting on the material volume. The right-

hand side of Eq. (2.15) is an integral volume over material coordinates carried out over the 

volume instantaneously filled by the moving fluid, thus 

 (∫ 𝑓 ⅆ𝑉

𝑉

)

𝑀𝑉

= ∫ 𝑓 ⅆ𝑉

𝑉

 (Eq.2.16) 

 

The equivalent expression of Eq. (2.15) in Eulerian coordinates can be written in two ways, 

known as the conservative and non-conservative forms. 

Non-Conservative Form: Noticing that in this case 𝑏 = 𝑣, the non-conservative form is 

obtained by using Eq. (2.6) in the derivation yielding 
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 ∫ [
𝐷

𝐷𝑡
[𝜌𝑣] + [𝜌𝑣𝛻 ⋅ 𝑣] − 𝑓] ⅆ𝑉

𝑉

= 0 (Eq.2.17) 

 

For the integral to be zero over any control volume, the integrand must be zero. Thus, 

 
𝐷

𝐷𝑡
[𝜌𝑣] + [𝜌𝑣𝛻 ⋅ 𝑣] = 𝑓 (Eq.2.18) 

 

Expanding the material derivative of the momentum term and reorganizing, the non-

conservative form is obtained as 

 
𝜌

𝐷𝑣

𝐷𝑡
+ 𝑣 (

𝐷𝜌

𝐷𝑡
+ 𝜌𝛻 ⋅ 𝑣)

= 𝑓 

(Eq.2.19) 

 

(
𝐷𝜌

𝐷𝑡
+ 𝜌𝛻 ⋅ 𝑣)  𝑖𝑠 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 

Using the continuity constraint and expanding the material derivative, the non-conservative 

form of the momentum equation reduces to 

 𝜌 (
𝜕𝑣

𝜕𝑡
+ (𝑣. 𝛻)𝑣) = 𝑓 (Eq.2.20) 

 

Conservative Form: The conservative version is obtained by applying the form of the 

Reynolds transport theorem given by Eq. (2.5) and is written as 
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 ∫ [
𝜕

𝜕𝑡
[𝜌𝑣] + 𝛻. {𝜌𝑣𝑣} − 𝑓] ⅆ𝑉

𝑉

= 0 (Eq.2.21) 

 

 

By setting the integrand to zero for the integral to be zero for any volume V, the 

conservative form of the momentum equation is obtained as 

 
𝜕

𝜕𝑡
[𝜌𝑣] + 𝛻. {𝜌𝑣𝑣} = 𝑓 (Eq.2.22) 

 

 

Where 𝜌𝑣𝑣 is the dyadic product. 

Both types can help explain the concepts of discretization and demonstrate actual 

details of implementation. The conservative form will be added in the derivations that 

follow. By invoking the continuity constraint, the non-conservative form can be easily 

obtained from the conservative form at any point. 

Once the external surface and body forces acting on the control volume are defined, the 

momentum equation's full form is obtained. The force 𝑓 is separated into two one denoted 

by 𝑓𝑠 representing the surface forces and the second by 𝑓𝑏  representing the body forces 

such that 

 𝑓 = 𝑓𝑠 + 𝑓𝑏 (Eq.2.23) 
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2.3 Domain Discretization 

   A computational mesh (Figure 8) on which the governing equations are 

subsequently solved is created by the discretization of the physical domain or mesh 

generation. Over the last few decades, the methods and techniques used for domain 

discretization have evolved drastically [66], [67] and have been largely automated [68]–

[71]nowadays. The features and characteristics that the mesh system should possess to be 

used in the sense of the finite volume approach are first defined before evaluating the types 

of elements typically used in a computational mesh. In calculating the gradient of a vector 

φ on both a structured and unstructured triangular mesh, these attributes will be provided. 

Generally, using either a structured or an unstructured grid scheme, a geometric domain 

can be discretized. The 3D elements are defined by their local indices in a structured mesh 

(i, j, k). There are several coding and performance benefits to a structured grid system, but 

it suffers from limited geometric flexibility.  

Additional complexity can be achieved in the generation of structured meshes by 

using multiple blocks to describe the geometry, with a structured mesh created either 

independently or jointly for each block. Another approach to make the generation of the 

mesh more flexible is to avoid the use of structured grids with their implicit topological 

information and to implement an unstructured mesh based on connectivity tables and 

geometric entity numbering with explicit topological information. For a long time, 

standardized grids have remained the staple of numerical modeling, and unstructured grids 

have only become more popular in the past two decades [72]. As problem size grew and 

manual mesh generation became too time-consuming [68], an automatic mesh generation 

was used from the early 1970s and onward. The first methods were semi-automatic, with 
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an operator manually putting points in the computational domain and then using a computer 

to create the mesh in a second stage. Nowadays, with all points and elements created 

automatically, the whole process is completely automated. In addition to several hybrid 

multi-block grids [73], most modern CFD codes can use unstructured grids. Open FOAM 

software [74] uses unstructured grids and can also use multi-block grids that are 

conforming and non-conforming [75]. In the background of an unstructured grid system, 

the finite volume method will be discussed here. However, its characteristics can be 

compared to those of a structured grid system as the unstructured finite volume mesh 

specifications are specified. 

 

Figure 8  

A) Domain of interest, B) Domain discretized using a uniform grid system, C) Domain 

discretized using an unstructured grid system with triangular elements [59]. 
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2.3.1 The Finite Volume Mesh 

Each interior cell in the domain is connected to the same number of neighboring 

cells for a regular structured grid. These adjacent cells (Figure 9) can be defined using the 

indices i, j, and k) respectively in the direction of the x, y, and (z) coordinates and can be 

reached directly by incrementing or decrementing the corresponding indices. Because 

topological information is embedded in the mesh structure via the indexing mechanism, 

enabling lower memory use. This also contributes to more excellent coding, cache 

utilization, and vectorization efficiency. In the development of the Finite Volume and 

Finite Difference methods, structured grids were commonly used. In a structured grid, an 

ordered set of indices (i, j, k) can be associated with each computational cell, where each 

index differs over a fixed range, regardless of the values of the other indices, and where 

adjacent cells have associated indices differing by plus or minus one. Thus, if there are 

elements Ni, Nj, and Nk in the index direction of i, j and k, respectively, then Ni *Nj* Nk 

is the total number of elements in the domain. Elements are hexagons with six faces and 

eight vertices in 3D spaces, with each interior element having six neighbors. Elements are 

quadrilaterals with four faces and four vertices in two dimension, with four neighbors for 

each interior element. 
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Figure 9  

Local indices and topology for a structured mesh [59]. 

 

 

In meshing an area, unstructured grids provide more consistency in terms of all the 

element forms used and in terms of where the elements can be concentrated. However, this 

stability comes at the expense of additional complexity. Elements are sequentially 

numbered in an unstructured mesh system, as are faces, nodes, and other geometric 

quantities. This suggests that, based on their indexes alone, there is no direct way to connect 

different entities together. Local connectivity must then be clearly specified, beginning 

with the determination of geometric quantities for a specific element. Just in (Figure 10), 

The neighbors of element 9, for instance, cannot be directly taken from its index. Likewise, 

the bounding faces of element 9, or their nodes, cannot be calculated or extracted from its 

index in the same manner as this can be achieved in a structured grid. Therefore, detailed 
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topological information about neighboring elements, faces, and nodes is needed to 

complement the grid's global indexing. 

 

Figure 10 

Unstructured mesh global indexing [59]. 

 

 

2.3.2 Element Types 

The finite volume mesh element is essentially a 3D mesh polyhedron (Figure 11) 

or a two-dimensional mesh polygon (Figure 12). The 3D shapes that are most used, as seen 

in (Figure 11), tetrahedrons, hexahedrons, prisms, and general polyhedrons in some 

situations. The type of faces for these 3D elements, which often represent the type of two-

dimensional elements (Figure 12), varies greatly, with quadrilaterals, triangles, and 
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pentagons being the most used. At the same time, some applications have also used general 

polygons. 

 

Figure 11 

Three-dimensional (3D) element types [59]. 
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Figure 12 

Three-dimensional (3D) face types or two-dimensional element types [59]. 

 

 

 

For such elements and faces, the computation of geometric factors can now be 

detailed. Interestingly, the volume of the elements is assumed to be the area of the two-

dimensional elements multiplied by a unit dimension in the off-plane direction when 

dealing with a two-dimensional mesh. Thus, the methods used to measure the volume of 

two-dimensional mesh elements are specifically those used to calculate the surface area of 

3D mesh faces. When necessary, other variables arising during discretization will be 

presented, which are solely dependent on geometric quantities. 
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The theory of fluid mechanics, derived from observed physical principles, was 

accompanied by CFD. This section includes the calculations that are most relevant and 

used in the estimation. Inherent in these thoughts is ANSYS Fluent [76], part of the ANSYS 

Workbench 2020 R1, in the program kit used. ANSYS Fluent is an efficient, customizable 

CFD tool with geometry, material properties, flow profiles, and reaction speeds, all 

important to the simulated model specification. As a mathematical model with improperly 

formalized parameters, it is necessary to consider the equations applied or dealt with that 

would have an inaccurate and most likely irrelevant solution that will prevent testing due 

to the lack of practical experimental implementation. 

 

2.4 Fluent Model 

 A significant number of flows found in nature and science is a combination of 

phases. Gas, liquid, and solid are physical phases of matter, but the phase principle is used 

as an identifiable material class with a clear inertial response to and contact with the flow  

in which it is immersed. For example, since each set of particles of the same size would 

have a similar dynamic reaction to the flow field, different-sized solid particles of the same 

substance may be viewed as distinct phases. 

VOF Model (Multiphase Model): Through solving a single set of momentum 

equations and tracing the volume fraction of each of the fluids in the domain, the VOF 

model will model two or more immiscible fluids [76]. 

 By using either the Euler-Lagrange method or the Euler-Euler approach, multi-

phase flows can be measured numerically. VOF is a type of approach to Euler-Euler, 
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essentially a technique of surface monitoring. Commonly used where there are more than 

two immiscible fluids, where the interface's location is significant.  

It only has one series of momentum equations, shared by all fluids, and each fluid's 

volume fraction is tracked in each computational cell. The equation of momentum, seen 

below, relies on the fractions of the volume of all phases by the properties of  𝜌 and 𝜇. 

 
𝜕

𝜕𝑡
(𝜌�⃗�) + 𝛻 ⋅ (𝜌�⃗��⃗�) = −𝛻𝑝 + 𝛻 ⋅ [𝜇(𝛻�⃗� + 𝛻�⃗�𝑇)] + 𝜌�⃗� + �⃗� (Eq.2.24) 

 

Volume Fraction Equation: The control of the interface(s) between the phases is 

achieved by using a continuity equation for a fraction of one or more of the phases. This 

equation has the following form for the 𝑞𝑡ℎ  phase [76]. 

 
1

𝜌𝑞
[

𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + 𝛻 ⋅ (𝛼𝑞𝜌𝑞�⃗�𝑞) = 𝑆𝛼𝑞

+ ∑(�̇�𝑝𝑞 − �̇�𝑞𝑝)

𝑛

𝑝=1

] (Eq.2.25) 

 

 

where �̇�𝑞𝑝 is the mass transfer from phase q to phase p and �̇�𝑝𝑞 is the mass transfer from 

phase p to phase q. By default, the source term on the right-hand side of the above 

Equation, 𝑆𝛼𝑞
, is zero, but you can specify a constant or user-defined mass source for each 

phase. 
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The Implicit Scheme 

 

𝛼𝑞
𝑛+1𝜌𝑞

𝑛+1 − 𝛼𝑞
𝑛𝜌𝑞

𝑛

∆𝑡
𝑉 + ∑(𝜌𝑞

𝑛+1𝑈𝑓
𝑛+1𝛼𝑞

𝑛+1, 𝑓)

𝑓

= [𝑆𝛼𝑞
+ ∑(�̇�𝑝𝑞 − �̇�𝑞𝑝)

𝑛

𝑝=1

] 𝑉 

(Eq.2.26) 

 

The Explicit Scheme 

 
𝛼𝑞

𝑛+1𝜌𝑞
𝑛+1 − 𝛼𝑞

𝑛𝜌𝑞
𝑛

∆𝑡
𝑉 + ∑(𝜌𝑞

 𝑈𝑓
𝑛𝛼𝑞

𝑛, 𝑓)

𝑓

= [𝑆𝛼𝑞
+ ∑(�̇�𝑝𝑞 − �̇�𝑞𝑝)

𝑛

𝑝=1

] 𝑉 (Eq.2.27) 

 

Where 

n+1 = index for new (current) time step 

n = index for previous time step 

𝛼𝑞 , 𝑓= face value of the  𝑞𝑡ℎ volume fraction, computed from the first- or second-order 

upwind, QUICK, modified HRIC, compressive, or CICSAM scheme 

𝑉 = volume of cell 

𝑈𝑓
  = volume flux through the face, based on normal velocity 

 

Viscosity for Non-Newtonian Fluids [77]: For incompressible Newtonian fluids, 

the shear stress is proportional to the rate-of-deformation tensor �̅̅�: 
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 𝜏̅̅ = 𝜇�̅̅� (Eq.2.28) 

 

where �̅̅� is defined by 

 �̅̅� = (
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) (Eq.2.29) 

 

and 𝜇 is the viscosity, which is independent of �̅̅�. 

For some non-Newtonian fluids, the shear stress can similarly be written in terms of a non-

Newtonian viscosity 𝜂: 

 𝜏̅̅ =  𝜂(�̅̅�)�̅̅� (Eq.2.30) 

 

In general, 𝜂 is a function of all three invariants of the rate-of-deformation tensor �̅̅�. 

However, in the non-Newtonian models available in ANSYS FLUENT, 𝜂 is a function of 

the shear rate �̇� only. �̇� is related to the second invariant of �̅̅� and is defined as 

 �̇� = √
1

2
�̅̅�: �̅̅� (Eq.2.31) 

 

Power Law for Non-Newtonian Viscosity 

 𝜂 = 𝑘�̇�𝑛−1𝐻(𝑇) (Eq.2.32) 
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where k and n are inputs. k is a measure of the fluid's average viscosity (the consistency 

coefficient); n is a measure of the fluid's divergence from the Newtonian (the power-law 

index); 𝐻(𝑇) known as the Arrhenius law for the fluids where the viscosity also depends 

on temperature. The value of n shall decide the class of the fluid: 

n = 1 
 

Newtonian fluid 

n > 1 
 

shear-thickening (dilatant fluids) 

n < 1 
 

shear-thinning (pseudo-plastics) 
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Chapter 3 

Role of Shear-Thinning 

3.1 Introduction 

 In this chapter, Avaz et al., investigated the behavior of bioink on the threshold of 

instability using a power-law fluid suspension model  (with rigid particles as a simple 

model of encapsulated cells). This theoretical model may enable the ability to tune the 

onset of instabilities by altering the concentration of the rigid particles. In practice, the 

instabilities at the deposition site by varying the printing pressure, bioink power-law 

coefficient, and the nozzle diameter can be controlled. The shear-thinning or -thickening 

of the bioink can be used to regulate deposition stability, create better cross-linking for gel 

formation and demonstrate the layer stacking process. In favor of this theoretical model, 

we have established a computational model using Fluent in chapter 3. 

 

3.2 Theoretical Model 

We considered an extrusion-based deposition of a viscous fluid thread leaving a 

nozzle and falling onto a stationary substrate (Figure 13). The nozzle, with diameter d and 

height H from the substrate, moves horizontally with a constant velocity V, and the fluid 

is released at the flow rate Q. We summarized the main considerations and assumptions 

underlying our model. We described a steady-state solution for the shape of the fluid jet 

from the nozzle to the substrate. The solution relies on the slenderness of the fluid jet and 

the absence of shear stresses on the free surface of the jet. 
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Figure 13 

Schematic representation of the bioink thread with a free-body diagram of a fluid element. 

 

 

 

The nozzle is assumed to be a uniform cylindrical duct of a constant diameter, D, under 

pneumatic pressure. One can assume that the average shear rate within the bioink 

(assuming developed flow in the nozzle) is 

 

 𝑄 = 𝑈𝑁𝜋𝑅𝑁
2  (Eq.3.1) 

 

where 𝑅𝑁
  and 𝑈𝑁denote the radius of the nozzle tip and the average velocity of the bioink 

flow at the nozzle tip, respectively. The displacement field of the flow can be obtained 

from 
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𝐷 =
1

2
(𝐿 + 𝐿𝑇) Where L = 𝛻𝑢 is the gradient of the velocity vector 𝑢. 

The axial and transverse equations of motion, after dropping the increment ds from both 

sides (see Figure 13), can be written as 

 
ⅆ𝐹𝑠

ⅆ𝑠
− 𝜌𝑔𝐴 𝑠𝑖𝑛 𝜓 = 𝜌𝐴𝑎𝑠 = 𝜌𝐴𝑈

ⅆ𝑈

ⅆ𝑠
, (Eq.3.2) 

 

 𝐹𝑠

ⅆ𝜓

ⅆ𝑠
− 𝜌𝑔𝐴 𝑐𝑜𝑠 𝜓 = 𝜌𝐴𝑎𝑡 = 𝜌𝐴𝑈2

ⅆ𝜓

ⅆ𝑠
, (Eq.3.3) 

 

with 𝐹𝑠 = 𝐴𝜎𝑠𝑠 + 2𝜋𝑅𝛾 and 𝐴 = 𝜋2. 

where the acceleration terms are derived from 𝐷𝑢𝑠 𝐷𝑡⁄ = 𝑈 ⅆ(𝑈𝑒𝑠) ⅆ𝑡⁄ = 𝑈𝑈′𝑒𝑠 +

𝑈𝜓′𝑒𝑡 

 

We assumed that the bioink behaves like a viscous fluid with a power-law stress-strain rate 

relationship. The total stress tensor for the bioink can be written in the form  

 

 𝜏 = 𝐾𝐷𝑒
(𝑛−1)

𝐷 (Eq.3.4) 

 

where K is the bioink consistency constant, n is the power-law index, and 𝐷𝑒 = √2𝐷 ⋅ 𝐷  

is the equivalent strain-rate. The bioink exhibits a shear thickening and shear thinning 

behavior for n > 1 and n < 1, respectively. The special case of n = 1 corresponds to an 

Newtonian fluid, with K = 𝜇 being the dynamic viscosity of the fluid. The total stress can 

be written as 
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 𝜎 = −𝑝𝐼 + 𝜏 (Eq.3.5) 

 

Where 𝑝 is the hydrostatic pressure in the fluid. 

The boundary condition for the radial stress at the free surface r = R is given by 

𝜎𝑟𝑟|𝑟=𝑅 = 𝛾 ∕ 𝑅, which can be used to determine the hydrostatic pressure in Eq. (5). 

Substituting 

p into (5), the axial force is obtained as 

 

 𝐹𝑠𝑠 = −3𝐴𝐾𝐷𝑒
(𝑛−1)

𝑈′ + 𝜋𝑅𝛾  (Eq.3.6) 

 

 𝑇′ =
𝑔 𝑠𝑖𝑛 𝜓

𝑈
, 𝑇𝜓′ =

𝑔 𝑐𝑜𝑠 𝜓

𝑈
 (Eq.3.7) 

 

 

𝑇 = −3𝐷𝑒
(𝑛−1)

𝑈′ − 𝑈2 +
𝛾

𝜌
√𝜋𝑈 ∕ 𝑄 

  

(Eq.3.8) 

 𝐷𝑒 = √2 [(
𝜕𝑢𝑟

𝜕𝑟
)

2

+ (
𝑢𝑟

𝑟
)

2

+ (
𝜕𝑢𝑠

𝜕𝑠
)

2

]   (Eq.3.9) 

 

 𝐷𝑒 = √3|𝑈′|   (Eq.3.10) 

 

Equations (3.7) can be combined and integrated to give. 

 

 𝑇(𝑠) = 𝑇0 𝑠𝑒𝑐(𝜓(𝑠)), (Eq.3.11) 
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𝑇0𝑈𝜓′ = 𝑔 𝑐𝑜𝑠2(𝜓), 

(√3)
𝑛+1

|𝑈′|𝑛−1𝑈′ = −𝑇0 𝑠𝑒𝑐(𝜓(𝑠)) − 𝑈2 +
𝛾

𝜌
√𝜋𝑈 ∕ 𝑄 

 

(Eq.3.12) 

 

The above equations were solved with the initial and final boundary conditions  

 

 𝜓(0) = 0°,    𝑈(0) = 𝑈0,    𝜓|@𝑁𝑜𝑧𝑧𝑙𝑒 = 𝜋 2⁄ ,    𝑈|@𝑁𝑜𝑧𝑧𝑙𝑒 = 𝑄/𝐴 (Eq.3.13) 

 

 𝑥 = ∫ 𝑐𝑜𝑠 (𝜓(𝑠))
𝑠

, 𝑧 = ∫ 𝑐𝑜𝑠 (𝜓(𝑠))
𝑠

  (Eq.3.14) 

 

The above equations can be written as 

 

𝑢𝑟 = −(𝑟 2⁄ )(𝜕𝑢𝑠 𝜕𝑠⁄ ) 

 

𝜎 = 𝜏 + (𝛾 𝑟⁄ − 𝑝)𝐼 

 

𝑝 = 𝐾𝐷𝑒
(𝑛−1) ⅆ𝑈

ⅆ𝑠
+

𝛾

𝑅
 

 

So far, we modeled the bioink as a homogeneous yield stress fluid deposition on a fixed 

substrate. 

 𝜏 = �̃�𝐷𝑒
(𝑛−1)

𝐷    (Eq.3.15) 

 �̃� = (1 − 𝐶) [
√2+3𝐶

√2(1−𝐶)
]

𝑛+1

𝐾   (Eq.3.16) 
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3.3 Numerical Model Development 

 Supporting the work by Avaz et al., the numerical model was designed using the 

CFD software package ANSYS FLUENT 2020 R1. This two-dimensional, multi-phase 

model was developed to study the deposition of different viscous power-law fluids. All the 

fluids were assumed to be immiscible and incompressible. The Eulerian-Eulerian 

dependent Volume of Fluid (VOF) model was used since the two fluids share a relatively 

well-defined interface. Air is specified as the primary phase and power-law fluids as the 

secondary phase. The flow geometry is shown schematically in (Figure 14), and a 

representational image of the model is shown in (Figure 13). A nozzle of diameter (D) at 

the height of (H) from a moving substrate has been considered for the analysis. Various 

viscous non-Newtonian power-law fluids with a consistency index (k) and the power-law 

index (n) were flowed through the inlet individually. The density considered by all the 

power-law fluids is ρ. Fluid properties are shown in Table 1. 

 

Figure 14 

2D fluent model geometry representing boundaries and mesh details. 
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Table 1 

Material properties 

 

Material 
Density 𝛒 

(kg/m3) 

Dynamic viscosity 

Consistency index k 

(Pa.s) 
Power Law index n 

Hydrogel 1126 499 0.7,0.9,1.0,1.1,1.5 

Air 1.225             1.7894e-05 

 

 

A fine structured mesh was generated using adaptive sizing all through the 

geometry with control volume size (𝜇𝑙) as shown in (Figure 14) after performing grid 

analysis. The inlet and outlet boundary conditions were assumed to be velocity and 

pressure, respectively. For all the simulations, the inlet velocity is V cm/s, the equivalent 

to the volumetric flow rate Q cm3/s, and the surface tension between the power-law fluid 

and the air is σ dyne/cm. A no-slip, no penetration boundary condition was imposed at the 

wall. The input parameters used for the model are listed in Table 2. The substrate is also a 

wall boundary, but with a translational speed of U cm/s, the nozzle position (Inlet) 

remained unchanged. However, since printhead and substrate movements are proportional 

and acceleration is expected to be zero, the model will cover the opposite scheme where 

the print head moves, and the substrate is constant. The domain was initialized with air and 

standard gravity g acting in a negative Y direction. 
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Table 2 

Parameters for the input model 

 Parameter Nomenclature Value Units 

D Nozzle diameter 0.01 m 

H Height/gap distance of the nozzle 0.1 m 

σ 
Surface tension coefficient between air 

and hydrogels 
60 mN/m 

V Substrate velocity 0.13 m/s 

U Fiber velocity from the inlet. 0.0056 m/s 

g Standard gravity acceleration 9.81 m/s2 

 

A schematic of the meshed geometry and the boundary conditions are shown in 

(Figure 14). A transient simulation with a time step 𝜇𝑡 = 0.25 sec was performed to capture 

the dynamic behavior of the fluid flow. Different methods were used for the discretization 

of the governing equations. A first-order upwind method was used to discretize the 

momentum equation since this scheme provides a proper representation of the fluid flow 

physics. For pressure-velocity coupling, Pressure Implicit with Splitting of Operators 

(PISO) is used. 

 

3.4 Results 

The first part of our results shows the fundamental behavior of non-Newtonian flow 

leaving the nozzle. Figure 15A(i) and 15A(ii) depicts the filament's shape between the 

nozzle and substrate for both theoretical and ANSYS Fluent model, respectively. The 

shear-thinning behavior of bioink yielded a smaller toe region while the increase in the 
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power-law coefficient enlarged the toe region. This indicates the chance of being unstable 

during printing, where a raise of power-law coefficient from n=0.7 to n=1.5 yielded an 

eight-fold increase in the length of toe-region. Figure 15B(i) and 15B(ii) highlights the role 

of the same parameter in bioink velocity post-deposition.  

 

 

Figure 15 

A) Thread profile from nozzle to substrate (i) Theoretical (ii) Fluent B) Velocity post 

deposition (i)Theoretical (ii) Fluent. 

 

 

 

Using the fluent model, the variations of fiber shape after leaving the nozzle were depicted 

in (Figure 16A) for different power-law fluids and (Figure 16B) is representing the actual 
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volume covered by bioink during deposition within each cell and the whole domain. The 

deposition of shear-thinning and -thickening fluids at different time steps showing the 

stable and unstable deposition are seen in (Figure 17). 

 

Figure 16 

A) Thread Profile B) Volume Fraction of the deposited bioinks. 
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Figure 17 

Deposition of shear-thinning and -thickening bioinks at different time intervals. 

 

 

 

3.5 Discussion 

In this chapter, we analytically studied the effects of shear-thinning on the physical 

behavior of bioink after leaving the nozzle. Shear thickening can be a consequence of cell 

concentrations, where the geometry of cells might regulate the power-law properties. In 

addition, hydrogel pore size and geometry on the behavior of the ink viscosity was 

analyzed. This shear thinning/thickening parameter may affect the deposition of bioinks. 

The theoretical model was based on Alginate, a widely used bioink model in biomedical 

engineering, mostly mixed with biological components for enhanced bioactivity. The 

presence of cells in the bioink influences the rheological properties, thus impacting the 

stability of extruded filament. 

This work provides insight into the role of cellular components in the overall 

behavior of hydrogels when leaving printhead nozzle. This can be of importance for future 

works on modeling the behavior of cell-laden hydrogels. The region of stability is shifted 
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by the presences of cells and this can be significant when considering the elasticity of cells 

(in this work, cells were assumed to be rigid particles). 

 

 

Figure 18 

The effect of shear thinning/thickening on the stability regions. 
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Chapter 4 

Numerical Simulation of Extrusion Bioprinting 

4.1 Extrusion Bioprinting 

The model aims to analyze the extrusion and the deposition of hydrogels in the region 

between the nozzle and substrate or previous layers. The distortion of the Fiber was 

simulated as a fluid flow within the paradigm of CFD. Fluid dynamics is governed by the 

law of conservation of mass and the conservation of linear momentum. To simplify our 

simulation, the following assumptions were made for the physics of fluid flow: 

I. The material was considered incompressible with the constant density (𝜌), and the 

mass conservation translates into volume conservation. 

II. We assumed to be a creeping flow and the inertial effects are negligible compared 

to the viscous forces. 

III. The hydrogel material was modeled with Non-Newtonian behavior, where the 

viscosity of the deposited fiber can be defined by a power-law index. 

IV. The liquid adheres to the nozzle and the substrate and a no-slip condition was 

assigned to all the wall boundaries. 

V. Extrusion-based bioprinting does not involve melting the filament material 

(temperature independent). The energy equation was turned off for all printing 

conditions, and the fiber deposition was considered isothermal. 

As there are more than two immiscible fluids in the domain multi-phase VoF model 

was chosen to solve the momentum equation and trace the volume fraction for all the 

Eulerian phases. It includes two eulerian phases. The primary phase is the air, and various 



www.manaraa.com

53 

bioinks are the secondary phase.  The fluent module does not have predefined materials for 

hydrogels; new fluids were created into the material library by specifying properties like 

density and dynamic viscosity.  The density (𝜌) and dynamic viscosity of distinct hydrogels 

are given in Table 3.  

 

Table 3 

 Material properties of different phases used in the model  

Material Density 𝜌 (kg/m3) 

Dynamic viscosity 

Viscosity coefficient 

k (Pa.s) 
Power-law index n 

Bioink 1 1126 499 0.7 

Bioink 2 1126 499 0.9 

Air 1.225        1.7894e-05 

 

Figure 19 

A) Geometry of the numerical model showing boundaries B) Details of the tetrahedral 

mesh. 
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4.1.1 Geometry and Mesh  

  The extruded fiber physics was studied by a computational model that involves the 

lower end of a standard extrusion nozzle and the distance between the printhead and 

substrate. In this model, the nozzle position was unchanged, while the substrate moves with 

a regulated speed. However, because the motions of the printhead and substrate are 

proportional to each other and the accelerations are assumed to be zero, the model can 

cover the opposite arrangement where the printhead shifts and the substrate is constant. 

Figure 19A represents the geometry of the numerical model. A cylindrical duct of inner 

diameter D1 (0.5mm) and outer diameter D2 (0.6mm) is the extrusion nozzle. The 

computational model assumes that the flow is laminar and completely developed at the 

nozzle exit.  However, the length of the nozzle is unrelated to the discharge from the nozzle. 

The moving substrate was modeled by a perpendicular plane below the printhead, with a 

gap distance (H) from the nozzle exit. A rectangular domain occupies the outside of the 

printing nozzle. The numerical model's leftover exterior surfaces were outlet boundaries, 

where the substance is free to leave. The nozzle diameter D normalizes all the dimensions 

of the graphical model, while the velocity V of the traveling substrate normalizes the 

average velocity within the nozzle.  Keeping the nozzle diameter and the substrate velocity 

constant (to avoid the effect velocity on the printed fiber), for various gap distances and 

multiple hydrogels, the fluid flow of the extruded fiber was simulated. Table 4 provides 

the numerical values chosen for the numerical simulations. Gravity was considered in the 

simulations in negative y-direction. 
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Table 4 

 Parameters used in numerical simulation  

Parameter Nomenclature value units 

D Nozzle diameter 0.0005 m 

H Height/gap distance of the nozzle (0.00025,0.00035) m 

𝜎 
Surface tension coefficient between air and 

bioink 
60 mN/m 

V Substrate velocity 0.0045 m/s 

U Fiber velocity from the inlet. 0.0045 m/s 

G Standard gravity acceleration 9.81 m/𝑠2 

 

Fluid flow was simulated using the ANSYS Fluent R1 2020 program, based on the 

method of finite-volume. The Equations (2.24) and (2.25) are integrated over a finite set of 

volumes of tetrahedral regulation that meshes the domain of simulation. Tetrahedral mesh 

specifics are indicated in (Figure 19B). The rectangular domain was initialized with no 

traces of the bioink inside it; then, the fluid starts from the inlet traveling through the nozzle 

and depositing onto the moving substrate. A sample of the deposited fiber is shown in 

(Figure 20A). 

The numerical solver computes discrete values of the continuous velocity and 

pressure fields at the center of the control volumes following a cell-centered discretization. 

Whenever required, the values at all other positions are interpolated from the discrete 

values. The numerical scheme evaluates across all the faces of the control volumes the 

advection and diffusion fluxes of momentum. Then according to the net fluxes, the 

cumulative amount of momentum within each control volume is modified. The pressure 
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field is a function of the continuity restriction since the fluid is incompressible. The 

pressure equation is derived from the mass conservations.  

 

Figure 20 

A) Sample deposition of bioink B) Top and Side- view of extruded fiber for H = 0.25mm 

for H = 0.35mm C) Cut cross-section view of a printed fiber. 

 

 

 

Also, an algebraic volume-of-fluid method which measures the transport of two 

additional field variables monitoring the location of the surface, captures the free surface 

of the extruded substance. For a study of the volume-of-fluid system, we refer readers to 

the following articles [44-47]. At normal time intervals, the progression of the system is 

solved incrementally. The accuracy of the numerical simulation depends on the time-step 
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intervals and the size of the control volumes. The maximum size of the control volumes in 

our models is 𝜇𝑙 = 0.1 mm, and 𝜇𝑡 = 0.005 sec is the time-step interval. As the entire 

domain is wide and has few solver restrictions, the size of the control volume cannot 

possibly be reduced to improve precision. With an implicit solver that guarantees the 

consistency of the computational system, the discretized momentum equations and 

pressure equations corresponding to the set of control volumes were solved. The numerical 

algorithm computes the new values of the primary discrete variables at each incremental 

time step, which are the local velocities, the strain, and the location of the extruded fiber's 

free surface. Secondary outcomes were determined from the primary variables, such as the 

streamline of the flow, the wall shear stress, pressure exerted by the extruded fiber on the 

substrate, fiber velocity within the nozzle.    

4.1.2 Morphology of the Printed Fiber 

  The shape of the printed Fiber was captured by the free surface-tracking algorithm. 

Figure 20B represents examples of top- and side-views of material deposition for two 

printing conditions: (a) small gap distance and (b) large gap distance. We see that the bioink 

spreads more on the substrate, at the front, and on the side of the printhead. For printing 

with a small gap, and the bioink has less side flow and prefers to stay at the back of the 

nozzle, for printing with a large gap. After the extrusion, the printed fiber quickly reaches 

a quiescent state. By virtue of the volume conservation, the volumetric flow rate of the 

material deposited on the moving substrate is the same as the volumetric flow rate in the 

nozzle. However, both the gap distance and velocity ratio influence the shape of the fiber 

cross-section. The velocities of the substrate and the fiber's velocity were kept constant 

throughout the simulated models. Then the crossection of the printed fiber for different gap 
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distances were measured as shown in (Figure 20C) at different locations and and the 

average values are tabulated in Table 5. The thickness of the strand is often believed to be 

equal to the gap distance; however, our numerical results indicate that the thickness of the 

strand ranges between −5% and +5% of the gap size in the processing parameters that were 

investigated. As the fiber moves through the gap zone, the shear flow is rearranged into a 

uniform flow at velocity V, resulting in the shrinkage of the fiber due to the mass 

conservation of the material. 

 

Table 5 

 Width and thickness of the fibers for different printing conditions 

Nozzle 

Diameter 

0.5mm 

Width Thickness 

Power Law 

Index (0.7) 

Power Law Index 

(0.9) 

Power Law 

Index (0.7) 

Power Law Index 

(0.9) 

H = 0.35 mm 0.6 mm 0.68 mm 0.35 mm 0.33 mm 

H = 0.25 mm 0.8 mm 0.89 mm 0.25 mm 0.24 mm 

 

4.1.3 Printing Pressure 

  To overcome the flow resistance coming from the fluid's adherence to the nozzle 

wall, the viscous flow creates a pressure gradient around the extrusion nozzle. The Hagen-

Poiseuille Law describes the pressure gradient 𝑃𝑧 driving the laminar creeping flow within 

the nozzle: 

 𝑃𝑧 =
32𝜇𝑈

𝐷2
 (Eq.4.1) 
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A printing force F is applied to the substrate by the extruded material, which refers to the 

pressure field integral minus a Patm gauge pressure over the substrate's surface. 

 𝐹 = ∫ (𝑃 − 𝑃𝑎𝑡𝑚) ⅆ𝑆
𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

 (Eq.4.2) 

 

The average viscous stress 𝜏𝑎 inside the nozzle is standardized by the value of the pressure 

field 

 �̅� = (𝑃 − 𝑃𝑎𝑡𝑚)/𝜏𝑎 (Eq.4.3) 

 

Where, 

 𝜏𝑎 = 𝜇�̇�𝑎 (Eq.4.4) 

 

 μ is the dynamic viscosity of the fluid and �̇�𝑎 is the average shear-rate of the fully-

developed laminar pipe flow. 

The normalized pressure distribution on the substrate is represented for different 

heights of the nozzle and different non-newtonian fluids. As expected, the extruded 

material applies a larger pressure on the substrate when the gap distance is small. For the 

printing conditions with a small gap (Figure 21A) H = 0.25 mm, the extruded material 

applies a pressure field almost axisymmetric, with the maximum pressure just below the 

nozzle's center. For larger gaps (Figure 21B) H = 0.35mm, the pressure level drops and is  

slighty concentrated towards the front end of the nozzle, Also, the fiber with power-law 
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n=0.7 the pressure exerted comparatively low compared to the pressure exerted by the fiber 

with power-law n= 0.9. 

 

Figure 21 

Pressure exerted on the moving substrate for A) H = 0.25 mm B) H = 0.35 mm for power 

law index 0.7 and 0.9. 

 

 

 

4.1.4 Wall Shear Stress 

 The tangential force per unit area exerted on the surface of the duct tube by the 

moving fluid is known as wall shear stress (WSS). The magnitude of WSS is proportional 
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to the gradient of velocity near the wall of the tube, i.e., how quickly the velocity of flow 

changes as it travels from a point on the wall of the tube to an exactly opposite point in a 

normal direction (i.e., perpendicular) to the wall of the tube towards the middle of the tube. 

Low WSS values are correlated with low local speeds and, hence, long fluid residence 

times in the near-wall area. This gradient of velocity near the wall is called the wall shear 

rate. The WSS value τw is defined as proportional to the wall shear rate. 

 𝜏𝑤 = 𝜇�̇�𝑤 (Eq.4.4) 

 

where μ is the dynamic viscosity of the fluid and �̇�𝑤 is the wall shear stress 

The shear stress on the moving substrate is shown for different heights of the nozzle 

and different non-newtonian fluids. The fiber depositing on the substrate when the gap 

distance is small generates more shear forces as more of the fluid is passing in the gap 

distance. For the printing conditions with a small gap (Figure 22A) H = 0.25  mm, the shear 

stress on the moving wall is almost axisymmetric, with the maximum stress toward the 

front end of the nozzle and fades away in the direction of the substrate movement. For 

larger gaps (Figure 22B) H = 0.35 mm, the shear stress drops and is concentrated towards 

the center of the nozzle. For fiber with the value of n = 0.7, the shear stress on the moving 

substrate is comparatively low, with the fiber's stress with n = 0.9. 
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Figure 22 

Wall shear generated on moving substrate for A) H = 0.25 mm B) H = 0.35 mm for power 

law index 0.7 and 0.9. 

 

 

 

The velocity of the fiber inside the nozzle from the inlet to the moving substrate, is plotted 

for different power-law fluids and for different gap distances H = 0.25 mm and H = 0.35 

mm in (Figure 23) and (Figure 24), respectively As the fiber begins with the initial velocity 

U (0.0045 m/s) and approaches the substrate velocity V (0.0045 m/s) after deposition, the 

plotting takes place within this range along the path from the inlet to the substrate. 
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Figure 23 

Plots representing the fiber velocity from nozzle to substrate at nozzle height H = 0.25 

mm. 

 

 

 

Figure 24 

Plots representing the fiber velocity from nozzle to substrate at nozzle height H = 0.35 

mm. 

 

 

n= 0.9 

n= 0.7 

n= 0.9 

n= 0.7 
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4.2 Coaxial Bioprinting 

The model shown below of a coaxial nozzel demonstrates the different flow behavior of 

the hydrogels. The geometry is the same as above, except that two fluids were flown 

simultaneously through the nozzle, as shown in (Figure 25A).  

 

Figure 25 

A) Geometry of the coaxial nozzle B) Details of tetrahedral mesh C) Cut cross-sectional 

view of coaxial extruded fiber to measure dimensions. 

 

 

 

The specifications of the Tetrahedral mesh are seen in (Figure 25B) with the control 

volumes and the time- step interval as earlier with 𝜇𝑙 = 0.1 mm, and 𝜇𝑡 = 0.005 sec, 

respectively. Figure 25C shows how the physical dimensions are taken for the extruded 

fibers. The fibers were extruded for two different heights (H = 0.5 mm and H = 0.75 mm). 

The overall diameter of a coaxial nozzle was compared to a single nozzle and the heights 

were increased in coaxial printing to make the fiber flow easy. The same bioinks from 
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(Table 3) were used here, but they flowed through different nozzles for each height.  For 

better understanding, the thread exiting the shell nozzle was made transparent and specific 

colors have been assigned to each hydrogel. The hydrogel with a power-law index of 0.7 

is colored blue, and the hydrogel with a power-law index of 0.9 is colored red for all the 

coaxial 3D bioprinting processes. The updated parameters are listed in Table 6. 

 

Table 6 

 Parameters used for coaxial model  

Parameter Nomenclature value units 

Dc Core nozzle diameter 0.0005 m 

Ds Shell nozzle diameter 0.001 m 

H Height/gap distance of the nozzle (0.0005,0.00075) m 

𝜎 
Surface tension coefficient between air and 

hydrogels 
60 mN/m 

V Substrate velocity 0.0045 m/s 

U Fiber velocity from the nozzle 0.0045 m/s 

g Standard gravity acceleration 9.81 m/𝑠2 

 

4.2.1 Results for Nozzle Height H=0.5mm  

  The core nozzle is  a diameter of 0.5 mm, and the shell nozzle is  1 mm diameter. 

For the nozzle height of H = 0.5 mm, the results were drawn and presented first for each 

hydrogel streaming from separate nozzles. For the corresponding cut cross-section views 

(Figure 26) and (Figure 29), the average physical dimensions are tabulated in Table 7 and 

Table 8 respectively. For each printing state, 3D figures of the isosurface are viewed in 



www.manaraa.com

66 

(Figure 27) and (Figure 30). Below the isosurface estimates, the contours of the pressure 

gradient and the wall shear stress are shown in (Figure 28) and (Figure 31). 

 

Table 7 

 Physical dimensions of the printed fiber for Figure 26 

Nozzle Diameter Width Thickness 

Core Nozzle (0.5 mm) 0.62 mm 0.21 mm 

Shell Nozzle (1 mm) 1.75 mm 0.5 mm 

 

 

Figure 26  

Cut cross-section view of the printed strand from Figure 27. 
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Figure 27 

Isosurface of the printed fiber where bioink with the power-law index of 0.7 as the shell 

and bioink with the power-law index of 0.9 as the core. 

 

 

 

Figure 28 

Contours of pressure gradient and wall shear on the moving substrate for Figure 27. 
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Table 8 

Physical dimensions of the printed fiber for Figure 29 

Nozzle Diameter Width Thickness 

Core Nozzle (0.5 mm) 0.67 mm 0.16 mm 

Shell Nozzle (1 mm) 1.80 mm 0.50 mm 

 

 

Figure 29 

Cut cross-section view of the printed strand from Figure 30. 
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Figure 30 

Isosurface of the printed fiber where bioink with the power-law index of 0.9 as the shell 

and bioink with the power-law index of 0.7 as the core. 

 

 

 

Figure 31 

Contours of pressure gradient and wall shear on the moving substrate for Figure 30. 
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For the nozzle height H = 0.5 mm, each hydrogel's velocity for the  core and shell 

plotted within the nozzle in Figure 32. 

 

Figure 32 

Plots representing the fibers velocity from nozzle to substrate coaxially at nozzle height H 

= 0.5 mm. 

 

 

 

4.2.2 Results for Nozzle Height H = 0.75 mm   

As the nozzle height H=0.5mm is low the fiber deposted looks compressed and is 

out of shape. The nozzel diameters remained the same and the nozzle height was increased 

to  H = 0.75 mm. The deposition was recorded in the results and presented first for each 

0.9 Core 

0.7 Shell 

0.9 Shell 

0.7 Core 
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hydrogel streaming from separate nozzles. The corresponding cut cross-section views 

(Figure 33) and (Figure 36), the physical dimensions are tabulated in Table 9 and Table 10, 

respectively. For each printing state, 3D figures of the isosurface are viewed in (Figure 34) 

and (Figure 37). Then, the pressure gradient and the wall shear stress contours are shown 

in (Figure 35) and (Figure 38) below them. 

 

Table 9 

 Physical dimensions of the printed fiber for Figure 33 

Nozzle Diameter Width Thickness 

Core Diameter (0.5 mm) 0.50 mm 0.26 mm 

Shell Diameter (1 mm) 1.37 mm 0.74 mm 

 

Figure 33 

Cut cross-section view of the printed strand from Figure 34. 
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Figure 34 

Isosurface of the multi-layer fiber where bioinks with the power-law index of 0.7 as the 

shell and 0.9 as the core. 

 

 

 

Figure 35 

Contours of pressure gradient and wall shear on the moving substrate for Figure 34. 
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Table 10 

 Physical dimensions of the printed fiber for Figure 36 

Nozzle Diameter Width Thickness 

Inner Diameter (0.5 mm) 0.56 mm  0.24 mm 

Outer Diameter (1 mm) 1.51 mm 0.73 mm 

 

 

Figure 36 

Cut cross-section view of the printed strand from Figure 37. 
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Figure 37 

Isosurface of the multi-layer fiber where bioinks with the power-law index of 0.9 as the 

shell and 0.7 as the core. 

 

 

 

Figure 38 

Contours of pressure gradient and wall shear on the moving substrate for Figure 37. 
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Figure 39 

Plots representing the fibers velocity from nozzle to substrate coaxially at nozzle height H 

= 0.75 mm. 

 

 

 

4.2.3 Mixing of  Bioinks 

The whole fiber was separated into the core and the shell and then using volume 

fraction (shows the space occupied by a fluid phase inside a cell or the whole domain) 

contour for both core and shell ink. In the top two contours, dark orange shows more 

concentration of the regional ink and light blue shows less concentration. The combined 

fiber below was divided into 5 regions depending on the mixing proportion of each bioink 

over the other. For Region I the volume of the core ink is more than 80%, region II is 

covered by 60 to 80% of the core ink and 20 to 40 % of the shell ink, region III has an 

equal proportion of both core and the sell inks, region IV show 20 to 40 % of the volume 

0.9 Core 

0.7 Shell 

0.9 Shell 

0.7 Core 
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is the core ink and 60 to 80% of the volume is the shell ink and region V shows more than 

80% of the volume is covered with the shell ink. (Figure 40) for the bioinks with power-

law of 0.7 as shell and 0.9 as core. (Figure 41) for the bioinks with power-law of 0.7 as 

core and 0.9 as shell. 

 

Figure 40 

Mixing of bioink where fluid with the power-law index of 0.7 as the shell and fluid with 

the power-law index of 0.9 as the core. 
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Figure 41 

Mixing of bioink where fluid with the power-law index of 0.9 as the shell and fluid with 

the power-law index of 0.7 as the core. 
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Chapter 5 

Diffusion  

5.1 Introduction 

Recent 3D bioprinting practices enable the creation of micro-tissues by utilizing 

cell-laden bioinks while safeguarding the basic orientation of the desired tissue.  3D 

printing techniques have been utilized to craft the supportive frame and microfluidic 

encasement in Organ-on-a-Chip (OoC) platforms[78]. One significant victory benchmark 

in the production of OoC platforms is the structural reliability of the bioprinted micro-

tissues, determined by the minimum feature size known as the bioprinting resolution. OoC 

platforms intend to imitate the functions of tissues and organs, linking the difference 

between the traditional models based on planar cell cultures/animals and the complex 

human structure. These structures aim to recapitulate the complications found in vivo, 

using developments in microfluidic technologies and 3D cell culture techniques, [79] 

which includes: 3D structure; heterogeneous cellularity; cell-cell interactions; the presence 

of a complex extracellular matrix (ECM); perfused vasculature; and biomechanical forces 

(e.g., fluid flow-generated shear forces).  

In recent years, attempts to build micro physio-logical systems (MPS) have focused 

on recreating human organs at the level of their smallest functional unit for toxicity testing 

and selective drug screening, such as the heart, liver, lung, and brain. Also, multiple 

"disease-on-a-chip" platforms have been built for basic science research to model human 

diseases. While these organ-on-a-chip platforms have shown substantial advances over 

conventional 2D monolayer culture systems in mimicking human organs and disease 
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stages, in many cases, they are still at the proof-of-concept level. Many of these platforms 

require the operation and maintenance of specific peripheral equipment and facilities, and 

therefore may not be best equipped for larger-scale compound screening. A simple 

microfluidic device is designed to mimic the diffusion process of blood vessels, which 

supply the nutrients, and a scaffold (gel) where nutrients can diffuse while housing the 

cells. The factors which are needed to study the diffusiveness of these supplies are the 

porosity of the system, the velocities of the fluids flow inside the channels, the size of the 

channels, and the pressure distribution around the device. 

 

5.2 Background Equations 

Darcy’s Law: to describe the flow through a porous medium. 

 𝑞 =
−𝑘

𝜇
𝛻𝑝 (Eq.5.1) 

 

Where 𝑞 is instantaneous flow rate,  𝑘 is permeability, 𝜇 is dynamic viscosity of fluid, and 

𝛻𝑝 is the pressure drop. 

Navier-Stokes equation for a porous model 

 

𝜕(𝜌𝑈)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑈𝑈)

= −𝛻𝑝 + 𝛻 ⋅ (𝜇((𝛻𝑈) + (𝛻𝑈)𝑇)) −
2

3
𝜇(𝛻 ⋅ 𝑈)𝐼 + 𝜌𝑔 + 𝑆 

(Eq.5.2) 
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A source term S is added to the Navier-Stokes equation to account the  porous zone in each 

control volume. The x component of the source term is given by 

 𝑆𝑥 = − (
𝐶1

𝑡
𝑈𝑥 +

𝐶2

𝑡

1

2
𝜌|𝑈|𝑈𝑥) (Eq.5.3) 

𝐶1

𝑡
=

𝜇

𝛼
;  𝛼 is Viscous resistance/Absolute inverse permeability, 

𝐶2

𝑡
  is Inertial resistance. 

 

5.3 Diffusion Model  

The four solids containing a rectangular block act as the porous zone 1 (Figure 

42C), was planted with three cylinders, two of them acting like channels. Another circular 

block in the center acts as porous zone 2 (Figure 42D).  To study the flow inside the 

channels, they were considered solids. The channels were placed across the rectangular 

block's width, and the circular block was placed at the center of the rectangular block. 

 

Figure 42 

A) Geometry showing boundary conditions B) Tetrahedral mesh details C,D) Porous 

zone locations. 
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Dimensions: Rectangular Block: Length = 80mm, Width = 30mm, Thickness = 8mm. 

Channel 1: Diameter = 0.25m, length = 30mm. Channel 2: Diameter = 0.5mm, length = 

30mm. Circular Block: Diameter = 10mm, Thickness = 4mm. 

Water flows with a velocity of 2m/s from both inlets of the channels. The interface 

between the channel and rectangular block acts as an outlet for the channel and as an inlet 

to the porous zone. The rectangular block and the cylindrical block are two different porous 

zones. The interface acts as an outlet for the rectangular block and an inlet for the circular 

block. Water can exit through the outlets and is constrained by the walls, as shown in 

(Figure 42A). The water that enters the channel starts to diffuse through the porous media. 

The porous zone conditions shown in Table 11 are considered to represent various 

hydrogels or fine sand. The flow throughout the zones is considered laminar. 

 

Table 11 

 Porous zone conditions 

Zone 

 

Viscous Resistance  

(1/m2) (x, y, z) 

 

Inertial Resistance 

(1/m) (x, y, z) 

 

Porosity 

(0 to 1) 

Zone 1 (Rectangular Block) 1.2e+10 350000 0.9 

Zone 2 (Circular Block) 1.2e+09 35000 0.9 

 

  A VOF multi-phase model was considered, with the primary phase as air and the 

second phase as water. The whole process was simulated as isothermal and under gravity 



www.manaraa.com

82 

in a negative y-direction. As the channels were considerably small compared to the 

rectangular block, meshing is done very fine (element size = 0.05 and 0.1). The whole 

geometry was meshed using tetrahedral elements with a maximum element size of 1mm, 

as shown in (Figure 42B).  

 

5.4 Results 

The results were studied as transient with step size 𝜇𝑡 = 0.1 sec for 50 sec. The 

pressure contour and the volume fraction of water were extracted every 12.5 sec. The 

diffusion inside the porous zone 1  is shown by the shaded region, which is colored with 

the pressure gradient in (Figure 43) and inside the porous zone 2 in (Figure 44). At 50 sec 

the pressure is plotted inside the channels in (Figure 45).  

 

Figure 43 

Pressure contour in porous zone 1. 
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Figure 44 

Pressure contour in porous zone 2. 

 

 

 

Figure 45 

Pressure plot inside the channels. 
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Chapter 6 

Conclusion and Future Scope 

6.1 Conclusion 

The numerical model is developed as additional data for the theoretical work by 

Avaz et al., (Bioink Instability in Extrusion Bioprinting: Role of Shear Thinning). During 

deposition, the fiber profile and fiber velocity of various bioinks in numerical modeling 

showed a similar trend with theoretical work. Additional data like volume fraction and 

fiber deposition at different time steps can also be calculated using numerical analysis. The 

shear-thinning/-thickening parameter influences the stability of printing. Both the 

theoretical and numerical approaches show that shear-thinning fluids provide more stable 

printing than that of shear-thickening fluids. 

 A CFD model is developed to simulate the process of 3D bioprinting. For this 

model two stable shear-thinning fluids were considered. These fluids were deposited using 

both single and coaxial nozzle heads. The parameters such as shape of the printed fiber, 

printing pressure, fiber velocity and wall shear stress in the system can be studied using 

CFD model. A uniform moving speed of the nozzle in single fiber deposition height of the 

nozzle has shown variations in all of the above parameters for both of the power-law fluids. 

In coaxial bioprinting, as both fluids are deposited at the same time the morphology of the 

multi-layer fiber, mixing of two fluids can also be examined. Like the single axial 

bioprinting the nozzle height and the position of the bioink flow (Core/Shell) influences 

mixing proportion, shape of the multi-layer fiber, printing pressure, relative flow velocities 

of the bioink and the wall shear stress inside the system. The fibers deposited through single 
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and coaxial nozzles with larger heights has retained a good shape and had low printing 

pressure compared to smaller nozzle heights. 

 One of the applications of bioprinting which is solute diffusion in a hydrogel system 

can also be modelled using this software. An example model showing the fluid diffusion 

from a microfluidic channel into a hydrogel system was developed. Using this diffusion 

model, the pressure gradient inside the system for different porous zones  were observed 

at different time intervals.  For the same flow velocities in different sized channels the 

pressure plots inside each channel were extracted.  

6.2 Future Scope 

 A lot of new concepts have been raised through this study that may lead to 

continued research. Firstly, as the models shown in this project are basic predictions made 

to simulate actual scientific problems experimental validation is needed. There are few 

other items for the future of this initiative that can be concentrated on. One of the major 

printability parameters is the printing speed, which is kept constant in the above bioprinting 

models. The changes in the shape of the fiber, printing pressure, etc. can be studied for 

various printing speeds. 

 Modelling multiple fibers next to each other can lead a whole new area of research 

for predicting the full-fledged bioprinted construct, interaction of two fluid fibers next to 

each other, porosity, and stiffness of the structure, etc. This can help us build a bioprinted 

microfluidic device where drug permeability, perfusion testing, etc., can be explored 

through numerical modeling.   
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